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Abstract. The physical properties and radiative role of cirrus clouds remain one of the uncertainties in the Earth—atmosphere
system. In this study, we present a detailed analysis of cirrus properties based on four years of surface millimetre wavelength
radar measurements in Beijing, China, where summer monsoon from the ocean and winter monsoon from the continent
prevails alternately, resulting in various cirrus clouds. More than 6600 cirrus clusters were studied to quantify the properties of
cirrus clouds, such as the height, optical depth and horizontal extent, which can serve as a reference for parameterization and
characterization in global climate models. In addition, comparison between cirrus clusters formed under summer monsoon and
winter monsoon indicates the different formation and evolution mechanisms of cirrus. Statistically, the temperature of more
than 90% of cirrus bins are below —15°C. The dependence of the radar reflectivity of cirrus particles on the height and
temperature was also observed in this study, indicating that the reflectivity of cirrus bins increases (decreases) as the
temperature (height) increases. In addition, it was found that there is a strong linear relationship between the mean reflectivity
and the cirrus cloud depth. Due to various synoptic circumstances, the cirrus clouds in summer are warmer, higher, and thicker,
with larger reflectivity than that in winter; in particular, the mean cloud-top height of cirrus clouds in summer is 2.5 km higher
than that in winter. It was found that most cirrus clusters in winter are likely to be the in situ origin type cirrus but some cirrus

clusters in summer are the in situ origin cirrus and others are the liquid origin type cirrus.

1. Introduction

According to the definition from the Glossary of the American Meteorological Society (AMS, 2019), the primary cirrus cloud
types are cirrus, cirrostratus, and cirrocumulus, and the term "cirrus cloud" is frequently used for all types of cirriform clouds.
Cirrus clouds are detached cirriform elements in the form of white, delicate filaments, of white (or mostly white) patches, or of
narrow bands, that are composed of ice crystals. Cirrus clouds absorb the outgoing infrared radiation from Earth’s surface and
lower atmosphere while reflecting a portion of the incident sunlight back to outer space. When cirrus clouds are thin enough
that the sun can be seen through them, the net impact on the planetary radiation balance is generally one of warming; thicker
cirrus reflect more sunlight and generally result in net cooling (Heymsfield et al. 2017; Kércher 2018; Kox et al. 2014). Among
all cloud types, only cirrus clouds exert potential warming effects on the Earth—atmosphere energy system. Studies show that

the occurrence frequency of cirrus clouds exhibits latitudinal variability ranging from 50% in the equatorial regions of Africa
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to 7% in the polar regions (Hahn and Warren 2007; Sassen et al. 2008, 2009; Stubenrauch et al. 2006). Cirrus clouds are an
important component of the planetary radiation budget in terms of magnitude; plus, they influence hydrological and climate
sensitivities and affect surface climate (Lawson et al. 2019; Yang et al. 2015).

The physical and optical properties of cirrus clouds, such as ice crystal size, ice shape, particle concentration, cloud-top
height, and optical depth, are heterogeneously and diversely distributed over the globe (Adhikari et al. 2012; Cotton et al. 2013;
Ge et al. 2019; Heymsfield et al. 2013; Jensen et al. 1996; Luebke et al. 2016; Mace et al. 2006; Yang and Fu 2009). Recent
studies show that cirrus clouds remain one of the largest uncertainty sources in global climate models (GCMs), due to the
deficiencies in representing their observed spatial and temporal variability (Joos et al. 2014; Muhlbauer et al. 2014; Zelinka et
al. 2012). According to the IPCC (Boucher et al. 2013), “Especially for ice clouds, and for interactions between aerosols and
clouds, our understanding of the basic micro-scale physics is not yet adequate, although it is improving.” Understanding the
microphysical and macrophysical properties of cirrus clouds, as well as their relationships with atmospheric states, such as
temperature, wind velocity and relative humidity, is important for advancing our fundamental understanding of the formation
and life cycles of cirrus cloud. It is also an essential step toward reducing the uncertainties of estimates of the climatic impact of
cirrus and improving the representation of cirrus clouds in GCMs.

Millimetre wavelength radar is a powerful method for observing the macroscopic and microphysical properties of cloud
vertical profiles owing to its ability to penetrate the interior of clouds. Because of their short wavelengths, they are sensitive to
small cloud droplets and ice crystals, meaning they detect all types of non-precipitating clouds well (Kollias et al. 2007). This
study used long-term continuous surface Ka-band radar data to study and understand the microphysical and macrophysical
properties of cirrus clouds over Beijing, China, in the northern mid-latitude region. Beijing (39.96°N, 116.37°E) is in the
subtropical monsoon zone with a typical continental monsoon climate. Winds from southeast ocean prevail in summer while
winds from northwest continent dominate in winter, resulting in hot and rainy summers but cold and dry winters. The
formation, evolution and life cycle of cirrus clouds present regional and distinctive traits, which are created by the regional
climate and, to a certain extent, the global climate too. This paper presents the features of cirrus clouds over mid-latitude
monsoon regions through detailed analysis based on long-term radar data, and serves as a reference for cloud parameterization
in GCMs.

Section 2 of this paper briefly introduces the Ka-band radar data, the identification method for cirrus clouds, and other
auxiliary datasets. Section 3 describes the macrophysical properties of cirrus clouds. Details of the microphysical properties of
cirrus clouds are presented in section 4. In section 5, the formation types of cirrus in winter and summer are investigated.

Conclusions are given in section 6.
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2. Cirrus observation and identification by Ka-band radar
2.1 Ka-band radar

The cirrus clouds analysed in this study are from observations of a Ka-band polarization Doppler radar (KPDR) situated at the
Institute of Atmospheric Physics (IAP, 39.967°N, 116.367°E), Beijing, China. KPDR was set up in 2010 and works at a
frequency of 35.075 GHz (wavelength of 8.55 mm) (Huo et al. 2019), measuring the reflectivity, Doppler velocity, spectral
width and linear depolarization ratio of cloud. It is equipped with a Magnetron-type transmitter using a reflectivity factor
threshold of —45 dBZ for cloud determination, which has stronger detection capability than the Ka-band radar with all-solid
type transmitter. The pulse width is 0.2 ps and the beam width is 0.4°. Its repetition frequency is 3.5 KHz and its vertical
resolution is 30 m. KPDR has operated daily since 2012, mostly in the vertically pointing mode. During special events—for
example, short-term collaborative observations with other instruments—the scanning mode changes to the Plane Position
Indicator or Radar Height Indicator mode. In 2013 and 2018, KPDR was non-operational during almost the whole of the
summer period. The radar data used in this paper were observed from 1 January 2014 to 31 September 2017. During these four
years, the valid operational time of the radar in the vertically pointing mode occupied more than 80% of the total time. It should
be noted that KPDR is insensitive to very small particles and it is possible that KPDR will miss some clouds with reflectivity
out range of the detection threshold. The missed percentage is inaccessible at present due to our incomplete understanding of

cirrus clouds and limitations of observation condition; however, it should be small according to the radar capability.

2.2. Cirrus identification

As stated in the introduction, the Glossary of the American Meteorological Society (AMS, 2019) describes and defines cirrus
cloud primarily from its appearance. However, such a definition is not applicable for the cloud classification of the KPDR data,
especially those observed with a small field of few (FOV) in the vertically pointing mode. Sassen et al. (2008) classified cloud
layers as cirrus via defining two criteria; namely, the visible optical depth should be less than 3.0 and the cloud-top temperature
should be lower than —40 °C, categorizing cirrus clouds via cloud physical and optical parameters. Heymsfield et al. (2017)
indicated that cirrus clouds form primarily in the upper troposphere, above about 8 km, where temperatures are generally
below —30°C. In the cloud classification algorithm developed for the Cloud Profiling Radar onboard the CloudSat satellite, the
average temperature at the largest radar equivalent reflectivity factor (Ze), the average largest Ze, the average height of the
maximum Ze, the cloud-base height, etc., are combined to determine cirrus cloud (Wang and Sassen 2001b). Ge et al. (2019)
used two temperature criteria to identify cirrus cloud: the temperature of the cloud top should be less than —30°C and the
temperature at the maximum Ze layer and at the cloud base should be less than 0°C.

KPDR has a cloud clustering and classification algorithm, a detailed description of which has been presented by Huo et al.
(2019). Here, we briefly describe it as follows. The KPDR cloud profiles firstly are grouped as clusters based on a combination
of a time—height clustering method and a k-means clustering method. After each cloud cluster is determined, a fuzzy logic

method is applied using multiple cloud properties, such as cloud-base height, cloud depth, radar reflectivity, etc., to classify the
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cloud cluster into nine types: Cs, Cc, Ac, As, St, Sc, Ns, Cu and Cb clouds. Clouds identified as Cs and Cc are the objects of
this study. Further, in order to ensure all cirrus clouds are determined exactly, two criteria have been added after the
classification algorithm; namely, the cloud-top temperature should be less than —30°C and the cloud-base temperature should
be less than 0°C. In some studies (Krdmer et al. 2016; Luebke et al. 2016; Heymsfield et al. 2017; Wolf et al. 2018), cirrus
clouds are defined as ice clouds with lower temperature < -38°C. In this study, according to the Glossary of the American
Meteorological Society (AMS, 2019), the cirrus clouds are referred to all types of cirriform clouds (Ci, Cc and Cs clouds),
which is determined by the reflectivity, temperature, height and depth.

2.3 Other datasets

In this study, we also used some other datasets to complement our investigation of the properties of cirrus cloud, such as the
temperature profile, water vapor, wind velocity, cloud optical thickness, etc. The research datasets of cloud optical thickness
(produced from Himawari-8) used in this paper were supplied by the P-Tree System, Japan Aerospace Exploration Agency
(https://www.eorc.jaxa.jp/ptree/index.html, last access: 6 January 2020). Other meteorological reanalysis data employed were
from the European Centre for Medium-Range  Weather  Forecasts (ECMWF) ERAS5  datasets

(https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5; last access: 6 January 2020).

3. Macrophysical properties of cirrus clouds
3.1 Cirrus cloud samples under summer and winter monsoon

Cirrus clouds can be vertically and horizontally extensive, with their various appearances dependent on the diverse range of
associated atmospheric movements and processes. KPDR is located in the north of the North China Plain, where to the west
and north are mountains and to the south and east is the Bohai Sea. In the region’s hot summers, monsoon from the sea brings
large quantities of water vapor, whereas dry and cold monsoon from the northern continent dominates this region in winter.
These different monsoon types support various atmospheric conditions, such as increasing relative humidity, cooling, updrafts,
etc., required for the formation of cirrus clouds, ultimately resulting in distinct cirrus distributions. Figure 1 presents a typical
example of a cirrus cloud distribution collected by KPDR in one month of winter (January 2016) and one month of summer

(August 2015).
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Figure 1. Cirrus clouds occurring in (a) January 2016 (winter) and (b) August 2015 (summer). The mean cloud-top height,
mean base height and lifetime of each cirrus cluster forms a cirrus “rectangle”. Its mean radar reflectivity is illustrated with
different colours. Dark red rectangles on the horizontal axis indicate periods without vertically pointing radar measurements.
The surface temperature (T, left-hand y-axis) and total water vapor (TWV, right-hand y-axis) in the two months are presented
in ().

There are more cirrus clusters in August than in January, and the mean radar reflectivity of cirrus in August is higher than
that in January. Cirrus clouds in August also show larger vertical dimensions than in January. The temperature and amount of
water vapor are two key parameters in the formation of clouds, especially in plain areas where orographic uplift is negligible.
The strong contrast in the climatic circumstances between a month in summer and a month in winter generates a diverse range
of cirrus clouds (Fig. 1¢). Thus, to better understand the physical or optical properties of cirrus clouds, statistical analyses were
carried out in this study for different seasons. Such comparisons of the cirrus clouds among the four seasons benefit our
understanding of the dominant formation origins of cirrus clouds when a region is governed alternately by different monsoon

types. In this study, four years of radar observations presented more than 6600 cirrus clusters for our analysis.

3.2 Monthly and hourly occurrence frequency of cirrus clouds

Radar data collected in vertically viewing mode were used to calculate the occurrence frequency of all clouds (Oan), which is
the ratio of cloudy profiles to all profiles in a certain time range (i.c., an hour or a month), as well as the occurrence frequency

of cirrus clouds (O.i), which is the ratio of profiles containing cirrus to all radar profiles:
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Oa1= Nan / N,
Oc¢i = N.i/ Nr,

(1)
2)

where Ny is the number of cloudy profiles, N; is the number of all radar profiles, and N; is the number of cirrus clouds profiles.
Figure 2 shows the monthly occurrence frequency of all clouds and cirrus clouds in four years. September has the maximum
Oq1 among all months, and summer/winter has the maximum/minimum O.i among the four seasons. Relative to Oui, Oci
decreases to 1/2—1/3, and in winter Oc; is about 33% of Oai. The average O,; in April and June is about 20%, whereas in winter
(December—February) it is no more than 10%. The average O,; in the four years is 16%, which is lower than the cirrus cloud
coverage of 24% reported by Hahn and Warren (2007) based on satellite measurements over North China. This might be
associated with the observation location and the FOV of the KPDR. Large quantities of water vapor over the sea areas and
orographic-lift movements over mountain areas provide advantageous conditions for the formation of clouds, meaning more

clouds occur over these areas relative to plain areas. Therefore, the occurrence frequency calculated from the KPDR data with

a small FOV are lower than the cloud coverage calculated from data with a broad FOV.
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Figure 2. Monthly occurrence frequencies of all clouds (Qall) and the occurrence frequency of cirrus clouds (Oci) (a) along

with the diurnal Oki in the four seasons (b).

KPDR operates continuously and thus allows the diurnal variation of Oci to be studied, which illustrates the potential

relationship with local thermal convection caused by solar heating. As shown in Fig. 2a, the three highest Oci values in spring,

summer, autumn and winter occur at 22:00/12:00/20:00, 16:00/22:00/23:00, 22:00/23:00/00:00 and 20:00/14:00/00:00,
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respectively, indicating larger Oci values appear both at night and during daytime. The hourly variations of Qi in the four
seasons are different; however, there is no apparent difference between day and night in each season. The diurnal variation of
Oi seems to be insensitive to solar heating, which drives the development of regional thermal convection. Here, the presence

of cirrus clouds over KPDR is not closely related with local air-updraft activities, indicating that these cirrus clouds may not be

generated locally by thermal convections.

3.3 Height, depth and extent of cirrus clouds

The top height of cirrus clouds indicates the highest condensation level in the troposphere, above which clouds cannot form
because of the non-conducive condensation conditions. The base height of cirrus clouds indicates the lowest level required for
cirrus formation. In this study, the cloud-top height (CTH) and cloud-base height (CBH) were calculated for each cirrus cloud
cluster; specifically, the CTH and CBH are the mean values of all cloudy profiles in a cirrus cluster. The distributions of the
mean CTH and CBH of all cirrus clouds in the four seasons are presented in Fig. 3, and Table 1 presents the quantified
statistical results.

It is shown that the CTH of cirrus clouds varies in the range of 5.09—-13.35 km (Fig. 3a). The difference between the
maximum CTH and the minimum CTH is about 7 km in each season, indicating the ranges of the condensation level and
various formation mechanisms of cirrus clouds. Besides, differences in the CTH between the four seasons are also apparent.
Both the maximum CTH (13.35 km) and the highest mean CTH (10.16 km) are found in summer, whereas winter has the
minimum CTH (11.25 km) and lowest mean CTH (7.66 km). In summer, 98% of cirrus clouds have a CTH greater than 8 km
and 57% are greater than 10 km. In winter, only 37% of cirrus clouds have a CTH larger than 8 km, and those with a CTH
higher than 6 km account for 94%. The mean CTH in summer is 2.5 km higher than that in winter, which means the average
condensation level in summer is also 2.5 km higher. Spring and autumn are two transition seasons and their CTHs are 8.95 km

and 9.09 km, respectively, which are between those of summer and winter.
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Figure 3. Distribution of cloud-top height (CTH) (a), cloud-base height (CBH) (b), cloud depth (CD) (c) and horizontal
extent (EXT) (d) in the four seasons. In (d), EXT is shown as log10 values.

Figure 3b shows that the CBH changes within a range of 5—11.8 km, and the minimum CBHs in the four seasons are close
to each other, ranging between 5.0 and 5.5 km. However, the mean CBH in summer is the highest (9.39 km) among the four
seasons, while the lowest (7.1 km) is in winter. The difference in CBH between summer and winter is 2.2 km. The CBHs in
spring and autumn are 8.30 km and 8.39 km, respectively. In summer, the percentage of cirrus clouds with a CBH larger than 8
km is 87%, while it is only 21% in winter. In winter, 86% of cirrus clouds have a CBH greater than 6 km. The CBH of cirrus
clouds in Beijing, especially in winter, is somewhat lower than that reported by Heymsfield et al. (2017), who stated cirrus
clouds were generally above 8 km.

It is shown that the mean cloud depths (CDs) of cirrus clouds in the four seasons are close, with the depths of most
clusters being less than 1 km (Fig. 3c). Statistically, in the four seasons, 57% of clusters have a CD of less than 0.5 km, 80%
less than 1 km, 90% less than 1.5 km, and 95% less than 2km. It is found that the maximum CD is 7.4 km, which occurs in the
summer. However, the maximum CD in winter is 3.6 km, which is almost half of that in the summer. It should be noted that the
CTH, CBH and CD here are the mean values of a cirrus cluster. It is therefore possible that there are some instances of CTH,
CBH and CD that are greater than their corresponding mean values.

The horizontal extent (EXT) of cirrus clouds indicates its lifetime and the formation mechanism type. For the KPDR, the
EXT of a cirrus cluster is computed as follows:

EXT = Vi X Ts 3
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where Vhy is the mean velocity of horizontal wind calculated from the ECMWEF-ERAS dataset and 7 is the continuous time
during which a cirrus cluster moves over the KPDR. It is found that the maximum EXT of cirrus clouds reaches 3100 km,
which is in October 2017, and the maximum T7¢; is 21 hours, which is in March 2016. The EXT ranges through orders of
magnitude from low values of less than 0.1 km to over 3000 km. Summer has the minimum mean, median and trimmed
mean EXT, while cirrus clouds in autumn have the maximum mean, median and trimmed mean EXT. Statistically, about 75%
of cirrus clouds have an EXT less than 50 km and 87% less than 100 km. The statistically quantified structural properties of

cirrus clouds in the four seasons are presented in Table 1.

Table 1. Statistical results for the cloud-top height (CTH), cloud-base height (CBH), cloud depth (CD) and horizontal extent
(EXT) in the four seasons. The ‘trimmean’ is the 10% trimmed mean of portion clusters, excluding 10% of clusters with the

highest and lowest values (units: km).

Season Parameters Mean Median  Trimmean Maximum Minimum
CTH 8.95 8.99 8.96 12.18 5.13
CBH 8.30 8.33 8.295 11.75 5.08
Spring CD 0.67 0.45 0.58 5.35 0.06
EXT 60.8 16.6 35.2 2824.9 0.18
COD 4.43 3.28 3.98 - 0.06
CTH 10.16 10.18 10.16 13.35 5.49
CBH 9.39 9.50 9.42 12.83 5.34
Summer CD 0.77 0.51 0.686 7.4 0.06
EXT 43.7 15.8 29.7 763.6 0.12
COD 6.17 4.49 5.76 - 0.1
CTH 9.09 9.14 9.12 12.02 5.32
CBH 8.39 8.42 8.4 11.90 5.1
Autumn CD 0.72 0.43 0.62 6.50 0.06
EXT 82.2 22.3 51.9 3101 0.10
COD 4.65 3.14 4.08 - 0.01
CTH 7.66 7.6 7.64 11.23 5.09
CBH 7.13 6.97 7.1 10.36 5.01
Winter CD 0.56 0.38 0.494 3.61 0.07
EXT 71.9 18.9 40.7 1773.1 0.69
COD 4.62 2.85 4.14 - 0.26

3.4 Optical depth of cirrus clouds

Cloud optical depths (COD) are relatively independent of wavelength throughout the visible spectrum. In the visible portion
of the spectrum, the COD is almost entirely due to scattering by droplets or crystals of clouds (AMS, 2019). Therefore, the
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CODs of cirrus clouds depend directly on the CD, the ice water content, and the size distribution of the ice crystals,
indicating a cooling effect or warming effect in the energy budget.

The Advanced Himawari Imager (AHI), onboard the geostationary meteorological Himawari-8 satellite operated by the
Japanese Meteorological Agency, observes the Beijing area every 10 min and began releasing COD and cloud-type products
in July 2015 with a spatial resolution of 5 km. The CODs are retrieved by using nonabsorbing visible wavelengths (i.e., 0.51
or 0.64 pm) and water-absorbing near-infrared wavelengths (i.e., 1.6 or 2.3 um) (Kawamoto et al. 2001; Nakajima and
Nakajma 1995). Quantified uncertainties of the AHI-CODs have not been reported, so we use them here directly. The data
nearest to KPDR that both AHI and KPDR determine as cirrus type are selected and their CODs are investigated. Those
collocated CODs (collected from the year 2016 to 2017) in the four seasons, combined with the mean CDs and mean
reflectivity, which are calculated from KPDR profiles observed within 10 min of the AHI observing time, are presented in

Fig. 4.
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Figure 4. The cloud optical depth (COD) of cirrus clouds in terms of the CD in spring (a), summer (b), autumn (c), and
winter (d). Colors indicate the mean radar reflectivity of those radar profiles within 10 min of the AHI observation time.

Panel (e) presents the probability density distribution of the COD in the four seasons.
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In the four seasons, CODs show an increasing tendency with increasing CD. The mean reflectivity shows a similar
tendency, meaning thicker cirrus clouds generally contain larger particles and a greater number density of ice particles. The
probability density distributions of COD in the four seasons show a higher probability occurring at lower COD. The mean
COD in spring, summer, autumn and winter is 4.43, 6.17, 4.65, and 4.62, respectively. The proportions of CODs lower than
3 in spring, summer, autumn and winter are 44%, 35%, 47% and 52%, respectively. The proportions of CODs lower than 10

in spring, summer, autumn and winter are 90%, 78%, 87% and 90%, respectively.

4. Microphysical properties of cirrus clouds

The most important microphysical quantities of cirrus clouds are the ice particle size distribution, the ice water content
(IWC), and their shapes (Heymsfield et al. 2017). It is known that the radar equivalent (or effective) reflectivity factor (Z)

can be expressed as

m2-1

2
2= [J] o(D,0,0)N(D,0,0)dDdOdD,  (4)
where a(D, 8, @) is the backscattering cross section with maximum dimension D and an axial direction (6, @) with respect

14

e 5

to the radar beam, N (D, 6, @) is the number density, 4 is the wavelength, and m is the complex index of refraction of the
scattering target. To date, numerous empirical relationships between Z. and cloud properties (P)—e.g., IWC, snow
precipitation rate—have been developed, usually in the power-law form of

Z. = APB, (5)

where 4 is the prefactor coefficient and B is the exponent derived in terms of calculated or measured datasets (Austin et al.
2009; Delanoé and Hogan 2010; Deng et al. 2015; Heymsfield et al. 2018; Heymsfield et al. 2008; Liu and Illingworth 2000;
Matrosov and Heymsfield 2017; Wang and Sassen 2001a). Delanoé and Hogan (2008, 2010) proposed a different method
using a forward model to retrieve the IWC and the effective radius by combination with the COD. Also, the basic principles
of this method are applied in the CloudSat/CALIPSO cloud microphysical retrieval algorithm. However, the utility of
empirical relations such as Eq. (5) is still common in many practical measurements, and the correspondence between the
IWC and Z. is related with the particle size distribution (the gamma distribution is mostly used for ice clouds).

For the KPDR, the development of the IWC and particle size retrieval algorithm is in progress but has not been tested
completely. In this paper, we use the measured radar reflectivity factor Z. (hereinafter just reflectivity; units: mm®m?>;
dBZ=10log(Z.)) directly, not the retrieved microphysical quantities, to study and characterize the microphysical properties of
cirrus clouds. It can be found from the Eq. (4) that reflectivity increases when ¢ and N increase; in other words, a larger

reflectivity normally indicates a larger D, N and IWC.

4.1 Reflectivity of cirrus clouds and height dependence

KPDR detects clouds at a 30-m vertical resolution. All cirrus radar bins collected from 2014 to 2017 were counted according

to their reflectivity and height, and the relative frequencies are shown separately in Fig. 5. In summer, the reflectivity mostly

11
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varies between —30 and —10 dBZ, while most of the reflectivity falls within the range of —35 to —25 dBZ in winter. In spring

and autumn, the reflectivity primarily ranges between —30 and —20 dBZ. The range of variation in reflectivity in summer is

the biggest among the four seasons, while it is smallest in winter. Statistically, at the same height where cirrus clouds exist in

the four seasons, the mean reflectivity of winter is 5 dBZ less than that of spring or autumn, and it is 10 dBZ less than that of

255 summer. In the four seasons, the mean reflectivity declines as the height increases, with a similar slope. It can also be seen
that the cirrus bins in summer are located at higher heights than in winter.
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Figure 5. The frequency of reflectivity versus height in spring (a), summer (b), autumn (c) and winter (d). Colors are the
values of the numbers divided by 60. The mean reflectivity calculated at various heights and the corresponding standard
260 deviation (STD) are presented in (e) and (f), respectively.
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4.2 Temperature dependence

Temperature plays a key role in the formation, evolution and lifetime of cirrus clouds. Activation of liquid waterdrops does
not happen below —38°C because the relative humidity where the ice forms is below water saturation. At temperatures higher
than —38°C, cirrus clouds can form heterogeneously or homogeneously (Kanji et al. 2017). The summer monsoon and winter
265 monsoon in Beijing support distinct temperatures, water vapor, etc., i.e., the conditions necessary for the formation of cirrus

clouds, resulting in distributions of reflectivity with different features corresponding to temperature (see Fig. 6).
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Figure 6. As in Fig. 5 but for temperature, and the colors are the values of the numbers divided by 100.

In spring, summer and autumn, cirrus clouds occur mostly at temperatures within the range of —15°C to —55°C, relative
270  to which cirrus clouds in winter occur at lower temperatures. Statistically, the frequency of cirrus bins with temperatures less
than —15°C is 96%, 94%, 95% and 95% in spring, summer, autumn and winter, respectively; the frequency of cirrus bins

with temperatures less than —25°C is 81%, 72%, 66% and 92% in spring, summer, autumn and winter, respectively; the
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frequency of cirrus bins with temperatures less than —35°C is 45%, 37%, 27% and 55% in spring, summer, autumn and
winter, respectively. The reflectivity shows a dependence on the temperature, increasing when temperature increases.
Statistically, the mean temperature of cirrus clouds in winter is lower than that in other seasons, even though these cirrus
clouds appear at lower heights. As the temperature decreases, the difference in reflectivity between winter and summer

declines. At the same temperature, the mean reflectivity in summer is higher than that in winter.

4.3 Depth dependence

Based on all the cirrus clusters in the four years, we calculated the mean reflectivity and the mean depth of each cluster (Fig.
7), and it was interesting to find that there is a strong linear relationship between the mean reflectivity and the CD. The mean
reflectivity increases as the CD increases. The linear equation shown in Fig. 7 represents a method that can be used to
estimate the mean reflectivity (or CD) if the CD (or reflectivity) is known, which should be useful for cloud parameterization

in GCMs.

10

—Z=391"D-35.18
£=391"D-35.18+ 10

Reflectivity (dBz)

0 1 2 3 4 5 6 T 8
CD (km)

Figure 7. The mean reflectivity of each cirrus cluster as a function of cloud depth (CD).

5. Origination type of cirrus clouds

Various prefactor coefficients dependent on temperature have been derived and applied in the Z—IWC power-law
relationship [i.e., Eq. (5)] since the distribution of reflectivity has a dependence on temperature (Heymsfield et al. 2018;
Heymsfield et al. 2013; Hogan et al. 2006; Matrosov and Heymsfield 2017). Based on the frequency statistics in section 4.2,
we also investigated the distribution of reflectivity (similar to the probability density function, PDF) at several temperatures.
Figure 8 shows the normalized frequency of reflectivity at several temperatures (—45°C, —40°C, —35°C, —30°C, —25°C,

—20°C), which are actually portions of Fig. 6. In Fig. 8, we use wider lines to illustrate the data in winter and summer for
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clearer contrast since the cirrus clouds show distinct features in the two seasons. Reflectivity’s dependence on temperature is
also shown in Fig. 8, and the six panels present different distributions of reflectivity at different temperature. Besides, in five
of the panels (a, b, c, d, e) of Fig. 8, the frequencies of reflectivity show very close appearances between the summer and
winter when reflectivity is lower than —25 dBZ. However, when reflectivity is above —25 dBZ, its PDF in winter declines
quickly, illustrating a different appearance with that in summer. The PDFs in winter differ somewhat with those in summer,

even at the same temperatures, which may be due to the different origination mechanism of cirrus clouds in the two seasons.
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Figure 8. Normalized frequency of the reflectivity at different temperatures in the four seasons. The data from winter (black)

and summer (green) are shown with solid and thicker lines for clearer contrast.

Kramer et al (2016) and Luebke et al. (2016) classified two types of cirrus according to their formation mechanism;
namely, in situ- and liquid-origin cirrus. The in situ-origin cirrus type forms directly as ice, while the liquid-origin type
originates from mixed-phase clouds that are completely frozen until they are lifted to the cirrus formation temperature region.
They reported that the in situ-origin cirrus are mostly thin, with lower IWC, while liquid-origin cirrus tend to be thicker with
higher IWC. Also, liquid-origin cirrus tend to have larger ice crystals than in situ-origin cirrus. Therefore, the reflectivity of
in situ-origin cirrus should generally be less than that of liquid-origin cirrus. From the statistical results in Fig. 8, especially
panels (a) to (d), it also seems that cirrus clouds in winter below the temperature of —30°C are likely to be in situ-origin

cirrus, whereas those in summer are formed from both types since the distribution in summer expands to a wider range and
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larger reflectivity. Thus, in summer, cirrus with lower reflectivity may be the in situ-origin type, while those with higher
reflectivity may be the liquid-origin type.

To further test the assumption, we divided the cirrus clusters in summer into two types based on a threshold of mean
reflectivity: larger than —30 dBZ (accounting for 30% of all cirrus clusters) and less than —30 dBZ. The mean reflectivity of a
cirrus cluster is the mean of the reflectivity of all cirrus bins in the cirrus cluster. We calculated the frequency of cirrus
clouds with a mean reflectivity larger than —30 dBZ, which is presented with dashed blue lines in Fig. 9 for comparison. The

remaining frequency portions in each panel are from the cirrus clusters with mean reflectivity lower than —30 dBZ.
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Figure 9. Normalized frequency of the reflectivity at different temperatures of cirrus clouds in summer. The green lines are
the same as in Fig.8; the blue dashed lines are calculated based on the cirrus clusters with mean reflectivity larger than —30
dBZ.

When compared with the frequency distribution based on all summer cirrus clusters, these cirrus clusters with mean
reflectivity larger than —30 dBZ contribute the absolute majority of those cirrus bins (in Fig. 8) with reflectivity larger than
—25 dBZ, illustrating different PDFs with those in winter. Specifically, the differences in the PDFs between winter and
summer are mostly due to the cirrus clusters with mean reflectivity higher than —30 dBZ. In particular, as shown in Fig. 9f,
those cirrus bins in Fig. 8 are wholly from these clusters with reflectivity larger than —30 dBZ. The strong contrast in Fig. 8f
further confirms that the differences in the PDF between summer and winter are due to the different origination type.

From panels (a) to (f) in Fig. 9, as temperature increases, so too does the ratio of those clusters with reflectivity larger

than —30 dBZ to all clusters. When the cloud temperature is lower than —30°C, it can be inferred that the cirrus clouds in
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summer with mean reflectivity lower than —30 dBZ are likely to be of the in situ-origin type, while those with mean
reflectivity larger than —30 dBZ are likely to be of the liquid-origin type. When cirrus clouds occur at temperatures higher
than —30°C, most will be of the liquid-origin type. In winter, most cirrus clouds are of the in situ-origin type. Therefore, the

distribution of reflectivity depends not only on the temperature but also on the origin type.

6. Summary and discussion

Cirrus clouds are an important component of the planetary radiation budget and remain an uncertainty source in GCMs. This

study used four years of vertically pointing Ka-band radar measurements at Beijing to characterize the physical and optical

properties of cirrus clouds and to investigate their origination type. The goal was to present the quantified properties of cirrus
clouds over the subtropical monsoon zone, which can be represented in GCMs towards a better understanding of the
relationships between temperature and radar reflectivity under different formation conditions in various monsoon climates.

Winter monsoon and summer monsoon prevail alternately over Beijing, resulting in four distinct seasons. Cirrus clouds in
winter and summer show strikingly different features. The specific findings about the properties of cirrus can be summarized
as follows:

1. The occurrence frequency, height, temperature and mean reflectivity of cirrus in winter are lower than in summer. The
average occurrence frequency over Beijing is 16%, and it is 20% in summer but less than 10% in winter. The diurnal
variation of the occurrence frequency is not obvious, indicating an insensitive response to solar heating.

2. The CTHs of cirrus clouds range within 5.09-13.35 km, and the difference between the maximum and minimum reaches
7 km in every season. The mean CTH in summer is 2.5 km higher than in winter. The CBHs range within 5-11.8 km, and
the difference in the mean CBH between summer and winter is 2.2 km. In total, 87% of cirrus are above 8 km in summer,
and 86% are above 6 km in winter. Statistically, in the four seasons, 57% of clusters have a depth of less than 0.5 km, 80%
less than 1 km, and 90% less than 1.5 km.

3. The EXT ranges through orders of magnitude from low values of less than 0.1 km to over 3000 km. Summer has the
minimum mean, median and trimmed mean EXT, whereas cirrus clouds in autumn have the maximum mean, median
and trimmed mean EXT. Statistically, about 75% of cirrus clouds have an EXT less than 50 km and 87% less than 100
km. In addition, the mean COD in spring, summer, autumn and winter is 4.43, 6.17, 4.65 and 4.62, respectively.

4.  The radar reflectivity of cirrus clouds are dependent on the height, temperature and CD. The reflectivity mostly varies
between —35 and —10 dBZ, and the mean reflectivity in summer is 10 dBZ higher than in winter. More than 90% of
cirrus bins are below the temperature of —15°C, and the mean temperature of cirrus in winter is the lowest among the
four seasons. It was found that there is a strong linear relationship between the mean reflectivity and the CD.

The PDFs of reflectivity with respect to various temperatures were also investigated. It was found that in winter they

show an agreement with those in summer when the reflectivity is relatively low; however, when reflectivity gets higher, the
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PDFs in winter illustrate striking differences with those in summer. A raw analysis indicated that most cirrus clouds are of
the in situ-origin type in winter; and when the cloud temperature is lower than —30°C, cirrus clouds in summer with mean
reflectivity lower than —30 dBZ are likely to be of the in situ-origin type. In addition, in future work, we intend to further
investigate the formation mechanisms of cirrus clouds in Beijing, as well as in other areas, for the purposes of

parameterization in GCMs and the development of a locally adaptive Z—IWC relationship.
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